mirror of
https://github.com/esiur/esiur-dotnet.git
synced 2025-05-06 11:32:59 +00:00
235 lines
6.7 KiB
C#
235 lines
6.7 KiB
C#
using Esiur.Analysis.Units;
|
|
using Esiur.Data;
|
|
using System;
|
|
using System.Collections;
|
|
using System.Collections.Generic;
|
|
using System.Globalization;
|
|
using System.Linq;
|
|
using System.Text;
|
|
using System.Xml.Linq;
|
|
|
|
namespace Esiur.Analysis.Coding
|
|
{
|
|
public class Huffman : ICodec
|
|
{
|
|
|
|
public class Node<TKey, TValue, TFrequency>
|
|
{
|
|
public TKey Key { get; set; } // decision maker (bit)
|
|
|
|
|
|
public TValue Value { get; set; } // node value
|
|
public TFrequency Frequency { get; set; } // node / subnodes frequency
|
|
|
|
public Dictionary<TKey, Node<TKey, TValue, TFrequency>> Branches { get; set; }
|
|
|
|
|
|
public Node<TKey, TValue, TFrequency> Parent { get; set; }
|
|
|
|
|
|
public override string ToString()
|
|
{
|
|
if (Sequence != null)
|
|
return $"{Key} => {Value} [{Frequency}] | {string.Join("->", Sequence)}";
|
|
else
|
|
return $"{Key} => {Value} [{Frequency}]";
|
|
}
|
|
|
|
|
|
public TKey[]? Sequence { get; internal set; }
|
|
|
|
public void UpdateDecisionSequence()
|
|
{
|
|
var parent = Parent;
|
|
|
|
var seq = new List<TKey>() { Key };
|
|
|
|
while (parent != null)
|
|
{
|
|
seq.Add(parent.Key);
|
|
parent = parent.Parent;
|
|
}
|
|
|
|
seq.Reverse();
|
|
|
|
Sequence = seq.ToArray();
|
|
}
|
|
}
|
|
|
|
|
|
public class Tree<TKey, TValue, TFrequency>
|
|
{
|
|
|
|
public (uint, TValue) Decide(TKey[] sequence, uint offset)
|
|
{
|
|
var oOffset = offset;
|
|
|
|
var node = Branches[sequence[offset++]];
|
|
|
|
while (node != null && node.Branches != null && node.Branches.Count > 0)
|
|
{
|
|
node = node.Branches[sequence[offset++]];
|
|
}
|
|
|
|
return (offset - oOffset, node.Value);
|
|
}
|
|
|
|
public Dictionary<TKey, Node<TKey, TValue, TFrequency>> Branches { get; }
|
|
public Dictionary<TValue, Node<TKey, TValue, TFrequency>> Leafs { get; set; }
|
|
|
|
public Tree(Node<TKey, TValue, TFrequency> rootNode)
|
|
{
|
|
Branches = rootNode.Branches;
|
|
|
|
var leafs = new List<Node<TKey, TValue, TFrequency>>();
|
|
|
|
GetLeafs(rootNode, leafs, new TKey[0]);
|
|
|
|
Leafs = leafs.ToDictionary(x => x.Value, x => x);
|
|
}
|
|
|
|
void GetLeafs(Node<TKey, TValue, TFrequency> node, List<Node<TKey, TValue, TFrequency>> leafs, TKey[] sequence)
|
|
{
|
|
foreach (var branch in node.Branches)
|
|
if (branch.Value.Branches == null || branch.Value.Branches.Count == 0)
|
|
{
|
|
leafs.Add(branch.Value);
|
|
branch.Value.Sequence = sequence.Append(branch.Key).ToArray();
|
|
}
|
|
else
|
|
{
|
|
GetLeafs(branch.Value, leafs, sequence.Append(branch.Key).ToArray());
|
|
}
|
|
}
|
|
}
|
|
|
|
public class HuffmanTable
|
|
{
|
|
public Dictionary<byte, BitArray> ForwardMap { get; set; } = new Dictionary<byte, BitArray>();
|
|
public Dictionary<BitArray, byte> BackwardMap { get; set; } = new Dictionary<BitArray, byte>();
|
|
}
|
|
|
|
|
|
public Tree<bool, byte, int> DecisionTree { get; set; }
|
|
|
|
public Huffman(byte[] source, uint offset, uint length)
|
|
{
|
|
//var freq = new int[byte.MaxValue + 1];
|
|
|
|
var freq = new Dictionary<byte, int>();
|
|
|
|
// var root = new Branch<bool, KeyValuePair<byte, int>>();
|
|
|
|
// calculate probabilities
|
|
var end = offset + length;
|
|
for (var i = offset; i < end; i++)
|
|
if (freq.ContainsKey(source[i]))
|
|
freq[source[i]]++;
|
|
else
|
|
freq.Add(source[i], 1);
|
|
|
|
var nodes = freq.OrderBy(x => x.Value).Select(x => new Node<bool, byte, int>()
|
|
{ Frequency = x.Value, Key = false, Value = x.Key }).ToList();
|
|
|
|
|
|
//var leafs = nodes.ToList();
|
|
|
|
while (nodes.Count() > 1)
|
|
{
|
|
var decision = nodes.Take(2).ToList();
|
|
|
|
decision[1].Key = true;
|
|
|
|
var branch = new Node<bool, byte, int>
|
|
{
|
|
Branches = new Dictionary<bool, Node<bool, byte, int>>()
|
|
{
|
|
[decision[0].Key] = decision[0],
|
|
[decision[1].Key] = decision[1]
|
|
},
|
|
Key = false,
|
|
Frequency = decision[0].Frequency + decision[1].Frequency
|
|
};
|
|
|
|
decision[0].Parent = branch;
|
|
decision[1].Parent = branch;
|
|
|
|
nodes = nodes.Skip(2).Append(branch).OrderBy(x => x.Frequency).ToList();
|
|
}
|
|
|
|
// create tree
|
|
|
|
DecisionTree = new Tree<bool, byte, int>(nodes[0]);
|
|
|
|
Console.WriteLine();
|
|
|
|
}
|
|
|
|
public byte[] Encode(byte[] source, uint offset, uint length)
|
|
{
|
|
var end = offset + length;
|
|
|
|
var seq = new List<bool>();
|
|
for (var i = offset; i < end; i++)
|
|
{
|
|
seq.AddRange(DecisionTree.Leafs[source[i]].Sequence);
|
|
}
|
|
|
|
|
|
var str = (String.Join("", seq.Select(x => x ? "1" : "0")));
|
|
|
|
// convert sequence to bytes
|
|
//var bits = new BitArray(seq.ToArray());
|
|
|
|
|
|
var rt = new byte[(seq.Count - 1) / 8 + 1];
|
|
var dst = 0;
|
|
|
|
for (var i = 0; i < rt.Length; i++)
|
|
{
|
|
for (var j = 7; j >= 0; j--)
|
|
{
|
|
if (dst >= seq.Count)
|
|
break;
|
|
|
|
if (seq[dst++])
|
|
rt[i] |= (byte)(0x1 << j);
|
|
}
|
|
}
|
|
|
|
// bits.CopyTo(rt, 0);
|
|
return rt;
|
|
}
|
|
|
|
public byte[] Decode(byte[] source, uint offset, uint length)
|
|
{
|
|
|
|
var rt = new List<byte>();
|
|
|
|
var bits = new bool[length * 8];
|
|
var end = offset + length;
|
|
|
|
|
|
|
|
var dst = 0;
|
|
for (var i = offset; i < end; i++)
|
|
{
|
|
for (var j = 7; j >= 0; j--)
|
|
{
|
|
bits[dst++] = ((source[i] >> j) & 0x1) > 0 ? true : false;
|
|
}
|
|
}
|
|
|
|
uint b = 0;
|
|
while (b < bits.Length)
|
|
{
|
|
var (len, value) = DecisionTree.Decide(bits, b);
|
|
rt.Add(value);
|
|
b += len;
|
|
}
|
|
|
|
return rt.ToArray();
|
|
}
|
|
}
|
|
}
|