2
0
mirror of https://github.com/esiur/esiur-dotnet.git synced 2025-05-06 19:42:58 +00:00
2022-11-06 13:25:49 +03:00

564 lines
26 KiB
C#

using Esiur.Analysis.DSP;
using Esiur.Analysis.Fuzzy;
using Esiur.Analysis.Optimization;
using Esiur.Analysis.Signals;
using Esiur.Analysis.Units;
using Microsoft.VisualBasic.Logging;
using ScottPlot;
using ScottPlot.Drawing.Colormaps;
using System.Security.Cryptography;
using Esiur.Analysis.Statistics;
using System.Diagnostics;
namespace Esiur.Analysis.Test
{
public partial class FSoft : Form
{
private double[] num = new double[] { 10 };
private double[] denum = new double[] { 1, 1, 0.1 };
private int interval = 3000;
private double stability = 100;
public FSoft()
{
InitializeComponent();
//var outage = Capacity.ComputeOutage(20000000, new Capacity.CSI[]
//{
// new Capacity.CSI(PowerUnit.FromDb(20), 0.1),
// new Capacity.CSI(PowerUnit.FromDb(15), 0.15),
// new Capacity.CSI(PowerUnit.FromDb(10), 0.25),
// new Capacity.CSI(PowerUnit.FromDb(5), 0.25),
// new Capacity.CSI(PowerUnit.FromDb(0), 0.15),
// new Capacity.CSI(PowerUnit.FromDb(-5), 0.1),
//});
var outage = Capacity.ComputeOutage(1, new Capacity.CSI[]
{
new Capacity.CSI(PowerUnit.FromDb(30), 0.2),
new Capacity.CSI(PowerUnit.FromDb(20), 0.3),
new Capacity.CSI(PowerUnit.FromDb(10), 0.3),
new Capacity.CSI(PowerUnit.FromDb(0), 0.2),
});
var low = new ContinuousSet(MembershipFunctions.Descending(20, 40));
var mid = new ContinuousSet(MembershipFunctions.Triangular(20, 40, 60));
var high = new ContinuousSet(MembershipFunctions.Ascending(40, 60));
var bad = new ContinuousSet(MembershipFunctions.Descending(0, 30));
var ok = new ContinuousSet(MembershipFunctions.Triangular(20, 50, 80));
var excelent = new ContinuousSet(MembershipFunctions.Ascending(70, 100));
var small = new ContinuousSet(MembershipFunctions.Descending(100, 200));
var avg = new ContinuousSet(MembershipFunctions.Triangular(100, 200, 300));
var big = new ContinuousSet(MembershipFunctions.Ascending(200, 300));
//var speedIsLowThenSmall = new FuzzyRule("Low=>Small", low, small);
double rating = 80;
for (double temp = 60; temp < 100; temp++)
{
var v = MamdaniDefuzzifier.Evaluate(new INumericalSet<double>[]
{
temp.Is(low).And(rating.Is(bad)).Then(small),
temp.Is(mid).And(rating.Is(ok)).Then(avg),
temp.Is(high).And(rating.Is(excelent)).Then(big),
}, MamdaniDefuzzifierMethod.CenterOfGravity, 100, 300, 1);
}
}
private void FMain_Load(object sender, EventArgs e)
{
//Ki -29:69 Kp -54:121 Kd 29:112
var config = new FuzzyChromosome() { KiStart = -29, KiLength = 69, KpStart = -54, KpLength = 121, KdStart = 29, KdLength = 112 };
double errStart = -0.412312, errEnd = 1, errAccStart = 0.011, errAccEnd = 0.1;
var lowErr = new ContinuousSet(MembershipFunctions.Descending(errStart, errEnd / 2.0));
var midErr = new ContinuousSet(MembershipFunctions.Triangular(errStart, errEnd / 2, errEnd));
var highErr = new ContinuousSet(MembershipFunctions.Ascending(errEnd / 2.0, errEnd));
var lowAccErr = new ContinuousSet(MembershipFunctions.Descending(errAccStart, errAccEnd / 2.0));
var midAccErr = new ContinuousSet(MembershipFunctions.Triangular(errAccStart, errAccEnd / 2.0, errAccEnd));
var highAccErr = new ContinuousSet(MembershipFunctions.Ascending(errEnd / 2.0, errAccEnd));
var kiSmall = new ContinuousSet(MembershipFunctions.Descending(config.KiStart * 0.1, (config.KiStart + (config.KiLength * 0.5)) * 0.1));
var kiAvg = new ContinuousSet(MembershipFunctions.Triangular(config.KiStart * 0.1, (config.KiStart + (config.KiLength * 0.5)) * 0.1, (config.KiStart + config.KiLength) * 0.1));
var kiBig = new ContinuousSet(MembershipFunctions.Ascending((config.KiStart + (config.KiLength * 0.5)) * 0.1, (config.KiStart + config.KiLength) * 0.1));
var kdSmall = new ContinuousSet(MembershipFunctions.Descending(config.KdStart * 0.1, (config.KdStart + (config.KdLength * 0.5)) * 0.1));
var kdAvg = new ContinuousSet(MembershipFunctions.Triangular(config.KdStart * 0.1, (config.KdStart + (config.KdLength * 0.5)) * 0.1, (config.KdStart + config.KdLength) * 0.1));
var kdBig = new ContinuousSet(MembershipFunctions.Ascending((config.KdStart + (config.KdLength * 0.5)) * 0.1, (config.KdStart + config.KdLength) * 0.1));
var kpSmall = new ContinuousSet(MembershipFunctions.Descending(config.KpStart * 0.1, (config.KpStart + (config.KpLength * 0.5)) * 0.1));
var kpAvg = new ContinuousSet(MembershipFunctions.Triangular(config.KpStart * 0.1, (config.KpStart + (config.KpLength * 0.5)) * 0.1, (config.KpStart + config.KpLength) * 0.1));
var kpBig = new ContinuousSet(MembershipFunctions.Ascending((config.KpStart + (config.KpLength * 0.5)) * 0.1, (config.KpStart + config.KpLength) * 0.1));
var x = Enumerable.Range(0, interval).Select(x => x * 0.01).ToArray();
var step = Enumerable.Repeat(1, interval).Select(x => (double)x).ToArray();
step[0] = 0;
var motor = new TransferFunction(num, denum, 0.01);
var motorPID = new TransferFunction(num, denum, 0.01);
var motorFuzzyPID = new TransferFunction(num, denum, 0.01);
//double Kp = 2, Ki = 0.4, Kd = 0.4;
double Ki = -1.9181372, Kp = 18.625, Kd = 0.38281253;
var pid = new TransferFunction(new double[] { Kd, Kp, Ki }, new double[] { 1, 1 }, 0.01);
var fuzzyPID = new TransferFunction(new double[] { Kd, Kp, Ki }, new double[] { 1, 1 }, 0.01);
var sysOut = new double[step.Length];
var sysOutFuzzyPID = new double[step.Length];
var sysOutPID = new double[step.Length];
var pidOut = new double[step.Length];
var pidOutFuzzy = new double[step.Length];
var errorOutPID = new double[step.Length];
var errOut = new double[step.Length];
var errAccOut = new double[step.Length];
//var errorAccOut = new double[step.Length];
var errorOutFuzzy = new double[step.Length];
var errorOutAccFuzzy = new double[step.Length];
for (var i = 0; i < step.Length; i++)
{
sysOut[i] = motor.Evaluate(step[i]);
errOut[i] = stability - sysOut[i];
errAccOut[i] = errOut[i] - (i == 0 ? 0 : errOut[i - 1]);
sysOutPID[i] = motorPID.Evaluate(step[i] + (i == 0 ? 0 : pidOut[i - 1]));
sysOutFuzzyPID[i] = motorFuzzyPID.Evaluate(step[i] + (i == 0 ? 0 : pidOutFuzzy[i - 1]));
errorOutPID[i] = (stability - sysOutPID[i]);
errorOutFuzzy[i] = (stability - sysOutFuzzyPID[i]);
errorOutAccFuzzy[i] = (errorOutFuzzy[i] - (i == 0 ? 0 : errorOutFuzzy[i - 1]));
pidOut[i] = pid.Evaluate(errorOutPID[i]);
pidOutFuzzy[i] = fuzzyPID.Evaluate(errorOutFuzzy[i]);
var ki = MamdaniDefuzzifier.Evaluate(new INumericalSet<double>[]
{
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kiSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kiSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kiAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kiSmall),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kiAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kiBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kiAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kiBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kiBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5);
var kp = MamdaniDefuzzifier.Evaluate(new INumericalSet<double>[]
{
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kpSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kpSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kpAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kpSmall),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kpAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kpBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kpAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kpBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kpBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5);
var kd = MamdaniDefuzzifier.Evaluate(new INumericalSet<double>[]
{
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kdSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kdSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kdAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kdSmall),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kdAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kdBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kdAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kdBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kdBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5);
fuzzyPID.InputCoefficients[0] = ki;
fuzzyPID.InputCoefficients[1] = kp;
fuzzyPID.InputCoefficients[1] = kd;
}
Debug.WriteLine($"Error Values Min: {errOut.Min()} Max: {errOut.Max()} ");
Debug.WriteLine($"Error Acc Values Min: {errAccOut.Min()} Max: {errAccOut.Max()} ");
formsPlot1.Plot.AddScatter(x, sysOut, Color.Red);
formsPlot1.Plot.AddScatter(x, sysOutPID, Color.Blue);
formsPlot1.Plot.AddScatter(x, sysOutFuzzyPID, Color.Green);
formsPlot1.Refresh();
}
struct KK
{
public float Ki;
public float Kp;
public float Kd;
public override string ToString()
{
return $"Ki {Ki} Kp {Kp} Kd {Kd}";
}
}
struct FuzzyChromosome
{
////public sbyte KiInputErrPosition;
//public sbyte KiInputErrScale;
////public sbyte KiInputErrAccPosition;
//public sbyte KiInputErrAccScale;
////public sbyte KiOutputPosition;
//public sbyte KiOutputScale;
public sbyte KiStart;
public sbyte KiLength;
public sbyte KdStart;
public sbyte KdLength;
public sbyte KpStart;
public sbyte KpLength;
public override string ToString()
{
return $"Ki {KiStart}:{KiLength} Kp {KpStart}:{KpLength} Kd {KdStart}:{KdLength}";
}
}
private double CalculateFuzzyPIDStepError(FuzzyChromosome config, double errStart, double errEnd, double errAccStart, double errAccEnd, bool draw, string label)
{
var lowErr = new ContinuousSet(MembershipFunctions.Descending(errStart, errStart + (errEnd - errStart) * 0.5));
var midErr = new ContinuousSet(MembershipFunctions.Triangular(errStart, errStart + (errEnd - errStart) * 0.5, errEnd));
var highErr = new ContinuousSet(MembershipFunctions.Ascending(errStart + (errEnd - errStart) * 0.5, errEnd));
var lowAccErr = new ContinuousSet(MembershipFunctions.Descending(errAccStart, errAccStart + (errAccEnd - errAccStart) * 0.5));
var midAccErr = new ContinuousSet(MembershipFunctions.Triangular(errAccStart, errAccStart + (errAccEnd - errAccStart) * 0.5, errAccEnd));
var highAccErr = new ContinuousSet(MembershipFunctions.Ascending(errAccStart + (errAccEnd - errAccStart) * 0.5, errAccEnd));
var kiSmall = new ContinuousSet(MembershipFunctions.Descending(config.KiStart * 0.1, (config.KiStart + (config.KiLength * 0.5)) * 0.1));
var kiAvg = new ContinuousSet(MembershipFunctions.Triangular(config.KiStart * 0.1, (config.KiStart + (config.KiLength * 0.5)) * 0.1, (config.KiStart + config.KiLength) * 0.1));
var kiBig = new ContinuousSet(MembershipFunctions.Ascending((config.KiStart + (config.KiLength * 0.5)) * 0.1, (config.KiStart + config.KiLength) * 0.1));
var kdSmall = new ContinuousSet(MembershipFunctions.Descending(config.KdStart * 0.1, (config.KdStart + (config.KdLength * 0.5)) * 0.1));
var kdAvg = new ContinuousSet(MembershipFunctions.Triangular(config.KdStart * 0.1, (config.KdStart + (config.KdLength * 0.5)) * 0.1, (config.KdStart + config.KdLength) * 0.1));
var kdBig = new ContinuousSet(MembershipFunctions.Ascending((config.KdStart + (config.KdLength * 0.5)) * 0.1, (config.KdStart + config.KdLength) * 0.1));
var kpSmall = new ContinuousSet(MembershipFunctions.Descending(config.KpStart * 0.1, (config.KpStart + (config.KpLength * 0.5)) * 0.1));
var kpAvg = new ContinuousSet(MembershipFunctions.Triangular(config.KpStart * 0.1, (config.KpStart + (config.KpLength * 0.5)) * 0.1, (config.KpStart + config.KpLength) * 0.1));
var kpBig = new ContinuousSet(MembershipFunctions.Ascending((config.KpStart + (config.KpLength * 0.5)) * 0.1, (config.KpStart + config.KpLength) * 0.1));
double Ki = -1.9181372, Kp = 18.625, Kd = 0.38281253;
//double Ki = 1, Kp = 1, Kd = 1;
var step = Enumerable.Repeat(1, interval).Select(x => (double)x).ToArray();
step[0] = 0;
var motor = new TransferFunction(num, denum, 0.01);
var fuzzyPID = new TransferFunction(new double[] { Kd, Kp, Ki }, new double[] { 1, 1 }, 0.01);
var sysOutFuzzyPID = new double[step.Length];
var pidOutFuzzy = new double[step.Length];
var errorOutFuzzy = new double[step.Length];
var errorOutAccFuzzy = new double[step.Length];
for (var i = 0; i < step.Length; i++)
{
sysOutFuzzyPID[i] = motor.Evaluate(step[i] + (i == 0 ? 0 : pidOutFuzzy[i - 1]));
errorOutFuzzy[i] = (stability - sysOutFuzzyPID[i]);
errorOutAccFuzzy[i] = (errorOutFuzzy[i] - (i == 0 ? 0 : errorOutFuzzy[i - 1]));
var ki = MamdaniDefuzzifier.Evaluate(new INumericalSet<double>[]
{
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kiSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kiSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kiAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kiSmall),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kiAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kiBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kiAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kiBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kiBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5);
if (double.IsNaN(ki))
return double.MaxValue;
var kp = MamdaniDefuzzifier.Evaluate(new INumericalSet<double>[]
{
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kpSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kpSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kpAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kpSmall),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kpAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kpBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kpAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kpBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kpBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5);
if (double.IsNaN(kp))
return double.MaxValue;
var kd = MamdaniDefuzzifier.Evaluate(new INumericalSet<double>[]
{
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kdSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kdSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kdAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kdSmall),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kdAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kdBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kdAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kdBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kdBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5);
if (double.IsNaN(kd))
return double.MaxValue;
fuzzyPID.InputCoefficients[0] = ki;
fuzzyPID.InputCoefficients[1] = kp;
fuzzyPID.InputCoefficients[1] = kd;
pidOutFuzzy[i] = fuzzyPID.Evaluate(errorOutFuzzy[i]);
}
if (draw)
{
formsPlot1.Plot.Clear();
var x = Enumerable.Range(0, interval).Select(x => x * 0.01).ToArray();
formsPlot1.Plot.AddScatter(x, sysOutFuzzyPID, Color.Green);
formsPlot1.Plot.AddText(label, 0, 1.5, 24, Color.DarkOrange);
formsPlot1.Refresh();
formsPlot2.Plot.Clear();
var range = FuzzyExtensions.Range(config.KiStart * 0.1, (config.KiStart + config.KiLength) * 0.1, 0.1);
formsPlot2.Plot.AddScatter(range, kiSmall.Sample(range));
formsPlot2.Plot.AddScatter(range, kiAvg.Sample(range));
formsPlot2.Plot.AddScatter(range, kiBig.Sample(range));
//formsPlot2.Plot.AddText("Ki", 0, 0, 20);
formsPlot2.Refresh();
formsPlot3.Plot.Clear();
range = FuzzyExtensions.Range(config.KpStart * 0.1, (config.KpStart + config.KpLength) * 0.1, 0.1);
formsPlot3.Plot.AddScatter(range, kpSmall.Sample(range));
formsPlot3.Plot.AddScatter(range, kpAvg.Sample(range));
formsPlot3.Plot.AddScatter(range, kpBig.Sample(range));
//formsPlot2.Plot.AddText("Kp", 0, 0, 20);
formsPlot3.Refresh();
formsPlot4.Plot.Clear();
range = FuzzyExtensions.Range(config.KdStart * 0.1, (config.KdStart + config.KdLength) * 0.1, 0.1);
formsPlot4.Plot.AddScatter(range, kdSmall.Sample(range));
formsPlot4.Plot.AddScatter(range, kdAvg.Sample(range));
formsPlot4.Plot.AddScatter(range, kdBig.Sample(range));
//formsPlot2.Plot.AddText("Kd", 0, 0, 20);
formsPlot4.Refresh();
}
//Debug.WriteLine("ERR " + errorOutFuzzy.Max() + " " + errorOutFuzzy.Min());
return errorOutFuzzy.RMS();
}
private double CalculatePIDStepError(double Kd, double Kp, double Ki, bool draw, string label)
{
var step = Enumerable.Repeat(1, interval).Select(x => (double)x).ToArray();
step[0] = 0;
var motor = new TransferFunction(num, denum, 0.01);
var sysOutPID = new double[step.Length];
var pidOut = new double[step.Length];
var errorOutPID = new double[step.Length];
var pid = new TransferFunction(new double[] { Kd, Kp, Ki }, new double[] { 1, 1 }, 0.01);
for (var i = 0; i < step.Length; i++)
{
sysOutPID[i] = motor.Evaluate(step[i] + (i == 0 ? 0 : pidOut[i - 1]));
if (double.IsInfinity(sysOutPID[i]))
Console.WriteLine();
errorOutPID[i] = (stability - sysOutPID[i]);
if (double.IsNaN(errorOutPID[i]))
Console.WriteLine();
pidOut[i] = pid.Evaluate(errorOutPID[i]);
if (double.IsInfinity(pidOut[i]))
Console.WriteLine();
}
if (draw)
{
formsPlot1.Plot.Clear();
var x = Enumerable.Range(0, interval).Select(x => x * 0.01).ToArray();
formsPlot1.Plot.AddText(label, 0, 1.5, 24, Color.DarkOliveGreen);
formsPlot1.Plot.AddScatter(x, sysOutPID, Color.DeepSkyBlue);
formsPlot1.Refresh();
}
return errorOutPID.RMS();
}
private void button1_Click(object sender, EventArgs e)
{
var genetic = new Genetic<FuzzyChromosome>(100, k =>
{
if (float.IsNaN(k.KiStart)
|| float.IsNaN(k.KiLength)
|| float.IsNaN(k.KpStart)
|| float.IsNaN(k.KiLength)
|| float.IsNaN(k.KdStart)
|| float.IsNaN(k.KiLength))
return (double.MaxValue);
if (k.KiLength < 0 || k.KpLength < 0 || k.KdLength < 0)// k.KiStart > k.KiEnd || k.KpStart > k.KpEnd || k.KdStart > k.KdEnd)
return (double.MaxValue);
var r = CalculateFuzzyPIDStepError(k, -(stability / 2), stability / 2, -(stability / 2), stability / 2, false, null);
if (double.IsNaN(r))
Console.WriteLine();
return r;
});
foreach (var (generation, fitness, k) in genetic.Evaluate(100))
CalculateFuzzyPIDStepError(k, -(stability / 2), stability / 2, -(stability / 2), stability / 2, true, $"Fuzzy PID: Generation {generation} Fitness {fitness}\r\n{k}");
// Console.WriteLine(best);
}
private void button2_Click(object sender, EventArgs e)
{
var gen = new Genetic<KK>(100, k =>
{
if (float.IsNaN(k.Ki) || float.IsNaN(k.Kp) || float.IsNaN(k.Kd))
return (double.MaxValue);
var r = CalculatePIDStepError(k.Kd, k.Kp, k.Ki, false, null);
if (double.IsNaN(r))
Console.WriteLine();
return r;
});
foreach (var (generation, fitness, k) in gen.Evaluate(100))
CalculatePIDStepError(k.Kd, k.Kp, k.Ki, true, $"PID: Generation {generation} Fitness {fitness}\r\n {k}");
}
private void button3_Click(object sender, EventArgs e)
{
num = textBox1.Text.Split("/").First().Trim().Split(" ").Select(x=>Convert.ToDouble(x)).ToArray();
denum = textBox1.Text.Split("/").Last().Trim().Split(" ").Select(x=>Convert.ToDouble(x)).ToArray();
var x = Enumerable.Range(0, interval).Select(x => x * 0.01).ToArray();
var step = Enumerable.Repeat(1, interval).Select(x => (double)x).ToArray();
step[0] = 0;
var motor = new TransferFunction(num, denum, 0.01);
var sysOut = new double[step.Length];
var errOut = new double[step.Length];
var errAccOut = new double[step.Length];
for (var i = 0; i < step.Length; i++)
{
sysOut[i] = motor.Evaluate(step[i]);
errOut[i] = stability - sysOut[i];
errAccOut[i] = errOut[i] - (i == 0 ? 0 : errOut[i - 1]);
}
Debug.WriteLine($"Error Values Min: {errOut.Min()} Max: {errOut.Max()} ");
Debug.WriteLine($"Error Acc Values Min: {errAccOut.Min()} Max: {errAccOut.Max()} ");
formsPlot1.Plot.AddScatter(x, sysOut, Color.Red);
formsPlot1.Refresh();
}
private void button4_Click(object sender, EventArgs e)
{
formsPlot1.Plot.Clear();
formsPlot1.Refresh();
}
private void formsPlot1_Load(object sender, EventArgs e)
{
}
private void textBox2_TextChanged(object sender, EventArgs e)
{
double s;
if (double.TryParse(textBox2.Text, out s))
stability = s;
}
}
}