using Esiur.Analysis.Algebra; using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace Esiur.Analysis.Neural { public class NeuralNetwork { NeuralLayer[] neuralLayers; public NeuralNetwork(int[] layers, MathFunction[] activations) { neuralLayers = new NeuralLayer[layers.Length]; for (var i = 0; i < layers.Length; i++) neuralLayers[i] = new NeuralLayer(layers[i], activations[i], i == 0 ? null : neuralLayers[i-1]); } public double[] FeedForward(double[] input) { for (int i = 0; i < input.Length; i++) { neuralLayers[0].Neurons[i].Value = input[i]; } for (int i = 1; i < neuralLayers.Length; i++) { for (int j = 0; j < neuralLayers[i].Neurons.Length; j++) { neuralLayers[i].Neurons[j].Forward(); } } return neuralLayers.Last().Neurons.Select(x => x.Value).ToArray(); } public void BackPropagate(double[] input, double[] target) { var output = FeedForward(input); // total error (square error function) double totalError = 0.5 * output.Zip(target, (x, y) => Math.Pow(x - y, 2)).Sum() ; // calculate partial derivitave of E-Total with respect to weights dE/dW = dE/dOF * dOF/dO * dO/dW for(var i = 0; i < target.Length; i++) { //var z = -(target[i] - output[i]) * } //for (int i = 0; i < output.Length; i++) // totalError += (float)Math.Pow(output[i] - expected[i], 2);//calculated cost of network //totalError /= 2; //this value is not used in calculions, rather used to identify the performance of the network //var gamma = neuralLayers.Select(x => x.Neurons.Select(n => n.Value).ToArray()).ToArray(); //int layer = layers.Length - 2; //for (int i = 0; i < output.Length; i++) gamma[layers.Length - 1][i] = (output[i] - expected[i]) * activateDer(output[i], layer);//Gamma calculation //for (int i = 0; i < layers[layers.Length - 1]; i++)//calculates the w' and b' for the last layer in the network //{ // biases[layers.Length - 2][i] -= gamma[layers.Length - 1][i] * learningRate; // for (int j = 0; j < layers[layers.Length - 2]; j++) // { // weights[layers.Length - 2][i][j] -= gamma[layers.Length - 1][i] * neurons[layers.Length - 2][j] * learningRate;//*learning // } //} //for (int i = layers.Length - 2; i > 0; i--)//runs on all hidden layers //{ // layer = i - 1; // for (int j = 0; j < layers[i]; j++)//outputs // { // gamma[i][j] = 0; // for (int k = 0; k < gamma[i + 1].Length; k++) // { // gamma[i][j] += gamma[i + 1][k] * weights[i][k][j]; // } // gamma[i][j] *= activateDer(neurons[i][j], layer);//calculate gamma // } // for (int j = 0; j < layers[i]; j++)//itterate over outputs of layer // { // biases[i - 1][j] -= gamma[i][j] * learningRate;//modify biases of network // for (int k = 0; k < layers[i - 1]; k++)//itterate over inputs to layer // { // weights[i - 1][j][k] -= gamma[i][j] * neurons[i - 1][k] * learningRate;//modify weights of network // } // } //} } } }