2
0
mirror of https://github.com/esiur/esiur-dotnet.git synced 2025-05-06 19:42:58 +00:00
This commit is contained in:
Ahmed Zamil 2022-11-07 15:08:28 +03:00
parent 23f68b2dbb
commit 54915b64cc

View File

@ -73,142 +73,7 @@ namespace Esiur.Analysis.Test
private void FMain_Load(object sender, EventArgs e) private void FMain_Load(object sender, EventArgs e)
{ {
//Ki -29:69 Kp -54:121 Kd 29:112 button3_Click(sender, e);
var config = new FuzzyChromosome() { KiStart = -29, KiLength = 69, KpStart = -54, KpLength = 121, KdStart = 29, KdLength = 112 };
double errStart = -0.412312, errEnd = 1, errAccStart = 0.011, errAccEnd = 0.1;
var lowErr = new ContinuousSet(MembershipFunctions.Descending(errStart, errEnd / 2.0));
var midErr = new ContinuousSet(MembershipFunctions.Triangular(errStart, errEnd / 2, errEnd));
var highErr = new ContinuousSet(MembershipFunctions.Ascending(errEnd / 2.0, errEnd));
var lowAccErr = new ContinuousSet(MembershipFunctions.Descending(errAccStart, errAccEnd / 2.0));
var midAccErr = new ContinuousSet(MembershipFunctions.Triangular(errAccStart, errAccEnd / 2.0, errAccEnd));
var highAccErr = new ContinuousSet(MembershipFunctions.Ascending(errEnd / 2.0, errAccEnd));
var kiSmall = new ContinuousSet(MembershipFunctions.Descending(config.KiStart * 0.1, (config.KiStart + (config.KiLength * 0.5)) * 0.1));
var kiAvg = new ContinuousSet(MembershipFunctions.Triangular(config.KiStart * 0.1, (config.KiStart + (config.KiLength * 0.5)) * 0.1, (config.KiStart + config.KiLength) * 0.1));
var kiBig = new ContinuousSet(MembershipFunctions.Ascending((config.KiStart + (config.KiLength * 0.5)) * 0.1, (config.KiStart + config.KiLength) * 0.1));
var kdSmall = new ContinuousSet(MembershipFunctions.Descending(config.KdStart * 0.1, (config.KdStart + (config.KdLength * 0.5)) * 0.1));
var kdAvg = new ContinuousSet(MembershipFunctions.Triangular(config.KdStart * 0.1, (config.KdStart + (config.KdLength * 0.5)) * 0.1, (config.KdStart + config.KdLength) * 0.1));
var kdBig = new ContinuousSet(MembershipFunctions.Ascending((config.KdStart + (config.KdLength * 0.5)) * 0.1, (config.KdStart + config.KdLength) * 0.1));
var kpSmall = new ContinuousSet(MembershipFunctions.Descending(config.KpStart * 0.1, (config.KpStart + (config.KpLength * 0.5)) * 0.1));
var kpAvg = new ContinuousSet(MembershipFunctions.Triangular(config.KpStart * 0.1, (config.KpStart + (config.KpLength * 0.5)) * 0.1, (config.KpStart + config.KpLength) * 0.1));
var kpBig = new ContinuousSet(MembershipFunctions.Ascending((config.KpStart + (config.KpLength * 0.5)) * 0.1, (config.KpStart + config.KpLength) * 0.1));
var x = Enumerable.Range(0, interval).Select(x => x * 0.01).ToArray();
var step = Enumerable.Repeat(1, interval).Select(x => (double)x).ToArray();
step[0] = 0;
var motor = new TransferFunction(num, denum, 0.01);
var motorPID = new TransferFunction(num, denum, 0.01);
var motorFuzzyPID = new TransferFunction(num, denum, 0.01);
//double Kp = 2, Ki = 0.4, Kd = 0.4;
double Ki = -1.9181372, Kp = 18.625, Kd = 0.38281253;
var pid = new TransferFunction(new double[] { Kd, Kp, Ki }, new double[] { 1, 1 }, 0.01);
var fuzzyPID = new TransferFunction(new double[] { Kd, Kp, Ki }, new double[] { 1, 1 }, 0.01);
var sysOut = new double[step.Length];
var sysOutFuzzyPID = new double[step.Length];
var sysOutPID = new double[step.Length];
var pidOut = new double[step.Length];
var pidOutFuzzy = new double[step.Length];
var errorOutPID = new double[step.Length];
var errOut = new double[step.Length];
var errAccOut = new double[step.Length];
//var errorAccOut = new double[step.Length];
var errorOutFuzzy = new double[step.Length];
var errorOutAccFuzzy = new double[step.Length];
for (var i = 0; i < step.Length; i++)
{
sysOut[i] = motor.Evaluate(step[i]);
errOut[i] = stability - sysOut[i];
errAccOut[i] = errOut[i] - (i == 0 ? 0 : errOut[i - 1]);
sysOutPID[i] = motorPID.Evaluate(step[i] + (i == 0 ? 0 : pidOut[i - 1]));
sysOutFuzzyPID[i] = motorFuzzyPID.Evaluate(step[i] + (i == 0 ? 0 : pidOutFuzzy[i - 1]));
errorOutPID[i] = (stability - sysOutPID[i]);
errorOutFuzzy[i] = (stability - sysOutFuzzyPID[i]);
errorOutAccFuzzy[i] = (errorOutFuzzy[i] - (i == 0 ? 0 : errorOutFuzzy[i - 1]));
pidOut[i] = pid.Evaluate(errorOutPID[i]);
pidOutFuzzy[i] = fuzzyPID.Evaluate(errorOutFuzzy[i]);
var ki = MamdaniDefuzzifier.Evaluate(new INumericalSet<double>[]
{
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kiSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kiSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kiAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kiSmall),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kiAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kiBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kiAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kiBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kiBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5);
var kp = MamdaniDefuzzifier.Evaluate(new INumericalSet<double>[]
{
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kpSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kpSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kpAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kpSmall),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kpAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kpBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kpAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kpBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kpBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5);
var kd = MamdaniDefuzzifier.Evaluate(new INumericalSet<double>[]
{
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kdSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kdSmall),
errorOutFuzzy[i].Is(lowErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kdAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kdSmall),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kdAvg),
errorOutFuzzy[i].Is(midErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kdBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kdAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kdBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kdBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5);
fuzzyPID.InputCoefficients[0] = ki;
fuzzyPID.InputCoefficients[1] = kp;
fuzzyPID.InputCoefficients[1] = kd;
}
Debug.WriteLine($"Error Values Min: {errOut.Min()} Max: {errOut.Max()} ");
Debug.WriteLine($"Error Acc Values Min: {errAccOut.Min()} Max: {errAccOut.Max()} ");
formsPlot1.Plot.AddScatter(x, sysOut, Color.Red);
formsPlot1.Plot.AddScatter(x, sysOutPID, Color.Blue);
formsPlot1.Plot.AddScatter(x, sysOutFuzzyPID, Color.Green);
formsPlot1.Refresh();
} }
@ -312,7 +177,7 @@ namespace Esiur.Analysis.Test
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kiAvg), errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kiAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kiBig), errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kiBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kiBig), errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kiBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5); }, MamdaniDefuzzifierMethod.CenterOfGravity, config.KiStart * 0.1, (config.KiStart + config.KiLength) * 0.1, 0.5);
if (double.IsNaN(ki)) if (double.IsNaN(ki))
return double.MaxValue; return double.MaxValue;
@ -328,7 +193,7 @@ namespace Esiur.Analysis.Test
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kpAvg), errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kpAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kpBig), errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kpBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kpBig), errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kpBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5); }, MamdaniDefuzzifierMethod.CenterOfGravity, config.KpStart * 0.1, (config.KpStart + config.KpLength) * 0.1, 0.5);
if (double.IsNaN(kp)) if (double.IsNaN(kp))
return double.MaxValue; return double.MaxValue;
@ -344,7 +209,7 @@ namespace Esiur.Analysis.Test
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kdAvg), errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(lowAccErr)).Then(kdAvg),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kdBig), errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(midAccErr)).Then(kdBig),
errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kdBig), errorOutFuzzy[i].Is(highAccErr).And(errorOutAccFuzzy[i].Is(highAccErr)).Then(kdBig),
}, MamdaniDefuzzifierMethod.CenterOfGravity, -20, 20, 0.5); }, MamdaniDefuzzifierMethod.CenterOfGravity, config.KdStart * 0.1, (config.KdStart + config.KdLength) * 0.1, 0.5);
if (double.IsNaN(kd)) if (double.IsNaN(kd))
return double.MaxValue; return double.MaxValue;
@ -457,10 +322,7 @@ namespace Esiur.Analysis.Test
private void button1_Click(object sender, EventArgs e) private void button1_Click(object sender, EventArgs e)
{ {
var genetic = new Genetic<FuzzyChromosome>(10, k =>
var genetic = new Genetic<FuzzyChromosome>(100, k =>
{ {
if (float.IsNaN(k.KiStart) if (float.IsNaN(k.KiStart)
|| float.IsNaN(k.KiLength) || float.IsNaN(k.KiLength)